Basic Study on Element-Free Galerkin Method(2nd Report, Application to Two-dimensional Potential Problem).

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A coupled Element Free Galerkin / Boundary Element method for stress analysis of two-dimensional solids

(2001) A coupled Element Free Galerkin / Boundary Element method for stress analysis of two-dimensional solids. Abstract Element Free Galerkin (EFG) method is a newly developed meshless method for solving partial differential equations using Moving Least Squares interpolants. It is, however, computationally expensive for many problems. A coupled EFG/Boundary Element (BE) method is proposed in t...

متن کامل

An element-free Galerkin method for three-dimensional fracture mechanics

The application of a coupled ®nite element± element-free Galerkin (EFG) method to problems in threedimensional fracture is presented. The EFG method is based on moving least square (MLS) approximations and uses only a set of nodal points and a CAD-like description of the body to formulate the discrete model. The EFG method is coupled with the ®nite element method which allows for the use of the...

متن کامل

Application of Boundera Element Method (Bem) to Two-Dimensional Poisson's Eqation

BEM can be used to solve Poisson's equation if the right hand side of the equation  is constant because it can easily be transformed to an equivalent Laplace equation. However, if the right hand side is not constant, then such a treatment is impossible and part of the equation can not be transformed over the boundary, hence, the whole domain has to be discretized. Although this takes away impor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series A

سال: 1996

ISSN: 0387-5008,1884-8338

DOI: 10.1299/kikaia.62.1746